Historical Document Image Binarization: A Review
Author:
Publisher
Springer Science and Business Media LLC
Link
https://link.springer.com/content/pdf/10.1007/s42979-020-00176-1.pdf
Reference178 articles.
1. Afzal MZ, Pastor-Pellicer J, Shafait F, Breuel TM, Dengel A, Liwicki M. Document image binarization using LSTM: a sequence learning approach. In: Workshop on historical document imaging and processing (HIP). ACM; 2015. p. 79–84.
2. Ahmadi E, Azimifar Z, Shams M, Famouri M, Shafiee MJ. Document image binarization using a discriminative structural classifier. Pattern Recognit Lett. 2015;63:36–42.
3. Akbari Y, Britto AS, Al-maadeed S, Oliveira LS. Binarization of degraded document images using convolutional neural networks based on predicted two-channel images. In: International conference on document analysis and recognition (ICDAR). IEEE; 2019. p. 973–8
4. Almeida M, Lins RD, Bernardino R, Jesus D, Lima B. A new binarization algorithm for historical documents. J Imaging. 2018;4(2):27.
5. Arruda A, Mello CA. Binarization of degraded document images based on combination of contrast images. In: International conference on frontiers in handwriting recognition (ICFHR). IEEE; 2014. p. 615–20.
Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Convolutional Autoencoder-Based medical image compression using a novel annotated medical X-ray imaging dataset;Biomedical Signal Processing and Control;2024-08
2. Innovative Binarization Solutions for Historical Document Clarity;2024 4th International Conference on Pervasive Computing and Social Networking (ICPCSN);2024-05-03
3. Area of Interest Tracking Techniques for Driving Scenarios Focusing on Visual Distraction Detection;Applied Sciences;2024-04-30
4. Application and development of the Lattice Boltzmann modeling in pore-scale electrodes of solid oxide fuel cells;Journal of Power Sources;2024-04
5. Automatic damage identification of Sanskrit palm leaf manuscripts with SegFormer;Heritage Science;2024-01-02
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3