Evaluation of Camera Pose Estimation Using Human Head Pose Estimation

Author:

Fischer RobertORCID,Hödlmoser Michael,Gelautz Margrit

Abstract

AbstractWe introduce and evaluate a novel camera pose estimation framework that uses the human head as a calibration object. The proposed method facilitates extrinsic calibration from 2D input images (NIR and/or RGB), while merely relying on the detected human head, without the need for depth information. The approach is applicable to single cameras or multi-camera networks. Our implementation uses a fine-tuned deep learning-based 2D human facial landmark detector to estimate the 3D human head pose by fitting a 3D head model to the detected 2D facial landmarks. Our work focuses on an evaluation of the proposed approach on real multi-camera recordings and synthetic renderings to determine the accuracy of the pose estimation results and their applicability. We assess the robustness of our method against different input parameters, such as varying relative camera positions, variations of head models, face occlusions (by masks, sun glasses, etc.), potential biases and variance among humans. Based on the experimental results, we expect our approach to be effective for numerous use cases including automotive attention monitoring, robotics, VR/AR and other scenarios where ease of handling outweighs accuracy.

Funder

Austrian Research Promotion Agency

Austrian Ministry of Climate Action

TU Wien

Publisher

Springer Science and Business Media LLC

Subject

Computer Science Applications,Computer Networks and Communications,Computer Graphics and Computer-Aided Design,Computational Theory and Mathematics,Artificial Intelligence,General Computer Science

Reference63 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Towards Accessible and Embodied Control of Telematic Sonic Space Through Browser-Based Facial Tracking;2023 4th International Symposium on the Internet of Sounds;2023-10-26

2. Transfer Learning for Driver Pose Estimation from Synthetic Data;2023 IEEE Intelligent Vehicles Symposium (IV);2023-06-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3