Executing Ad-Hoc Queries on Large Geospatial Data Sets Without Acceleration Structures

Author:

Bormann PascalORCID,Krämer MichelORCID,Würz Hendrik M.ORCID,Göhringer Patrick

Abstract

AbstractIn this case study, we investigate if it is possible to harness the capabilities of modern commodity hardware to perform ad-hoc queries on large raw geospatial data sets. Normally, this requires building an index structure, which is a time-consuming process. We aim to provide means to individual users who receive a new or updated geospatial data set and want to directly start working with it without having to build such an index structure first. To this end, we conduct various experiments on two distinct types of data: 3D building models and point clouds. For the former, we demonstrate that well-known algorithms such as fast string search allow a wide range of queries to be answered in at most a few seconds on data sets with over a million buildings. The usage of progressive indexing additionally improves query run time by more than a factor of two. Regarding point clouds, we achieve similar run times using the popular LAS file format and a query throughput of up to a billion points per second when using a columnar memory layout. The run time of ad-hoc queries is often on par with that of database-driven solutions, sometimes even outperforming them. Considering that ad-hoc queries require no preprocessing, our results show that they are a viable alternative to acceleration structures when working with geospatial data.

Funder

Fraunhofer-Institut für Graphische Datenverarbeitung IGD

Publisher

Springer Science and Business Media LLC

Reference61 articles.

1. Yang C, Goodchild M, Huang Q, Nebert D, Raskin R, Xu Y, Bambacus M, Fay D. Spatial cloud computing: How can the geospatial sciences use and help shape cloud computing? Int J Dig Earth. 2011;4(4):305–29. https://doi.org/10.1080/17538947.2011.587547.

2. Petri G. An introduction to the technology mobile mapping systems. GeoInformatics. 2010;13(1):32–43.

3. Puente I, González-Jorge H, Arias P, Armesto J. Land-based mobile laser scanning systems: a review. Int Arch Photogrammetry Remote Sens Spatial Inform Sci. 2011;XXXVIII–5/W12:163–8. https://doi.org/10.5194/isprsarchives-XXXVIII-5-W12-163-2011.

4. Arefi H. From LIDAR point clouds to 3D building models. PhD thesis, Institute for Applied Computer Science-Bundeswehr University Munich; 2009.

5. European Space Agency ESA: Sentinel Online. Accessed: 2022-11-09 (2022). https://sentinel.esa.int.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3