Domain Adaptation of Transformer-Based Models Using Unlabeled Data for Relevance and Polarity Classification of German Customer Feedback

Author:

Idrissi-Yaghir AhmadORCID,Schäfer HenningORCID,Bauer NadjaORCID,Friedrich Christoph M.ORCID

Abstract

AbstractUnderstanding customer feedback is becoming a necessity for companies to identify problems and improve their products and services. Text classification and sentiment analysis can play a major role in analyzing this data by using a variety of machine and deep learning approaches. In this work, different transformer-based models are utilized to explore how efficient these models are when working with a German customer feedback dataset. In addition, these pre-trained models are further analyzed to determine if adapting them to a specific domain using unlabeled data can yield better results than off-the-shelf pre-trained models. To evaluate the models, two downstream tasks from the GermEval 2017 are considered. The experimental results show that transformer-based models can reach significant improvements compared to a fastText baseline and outperform the published scores and previous models. For the subtaskRelevance Classification, the best models achieve a micro-averagedF1-Score of 96.1 % on the first test set and 95.9 % on the second one, and a score of 85.1 % and 85.3 % for the subtaskPolarity Classification.

Funder

Deutsche Forschungsgemeinschaft

Fachhochschule Dortmund

Publisher

Springer Science and Business Media LLC

Subject

Computer Science Applications,Computer Networks and Communications,Computer Graphics and Computer-Aided Design,Computational Theory and Mathematics,Artificial Intelligence,General Computer Science

Reference56 articles.

1. Dang NC, Moreno-García MN, De la Prieta F. Sentiment analysis based on deep learning: a comparative study. Electronics. 2020;9(3):483. https://doi.org/10.3390/electronics9030483.

2. Wojatzki M, Ruppert E, Holschneider S, Zesch T, Biemann C. Germeval 2017: Shared Task on Aspect-based Sentiment in Social Media Customer Feedback. In: Proceedings of the German Society for Computational Linguistics and Language Technology (GSCL) Workshop: GermEval Shared Task on Aspect-based Sentiment in Social Media Customer Feedback, Berlin, Germany, 2017;1–12 .

3. Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser L, Polosukhin I. Attention is All You Need. In: Proceedings of the 31st International Conference on Neural Information Processing Systems, NeurIPS. NIPS’17, pp. 6000–6010, Long Beach, California, USA 2017.

4. Liu B. Sentiment analysis: mining opinions, sentiments, and emotions. 1st ed. Cambridge: Cambridge University Press; 2015.

5. Cortes C, Vapnik V. Support-vector networks. Mach Learn. 1995;20(3):273–97. https://doi.org/10.1007/bf00994018.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3