Publisher
Springer Science and Business Media LLC
Reference52 articles.
1. Abu-Nimeh S, Nappa D, Wang X, Nair S (2007) A comparison of machine learning techniques for phishing detection. In: Proceedings of the Anti-phishing Working Groups 2Nd Annual eCrime Researchers Summit, ACM, New York, NY, USA, eCrime ’07, pp 60–69. 10.1145/1299015.1299021
2. Akinyelu AA, Adewumi AO. Classification of phishing email using random forest machine learning technique. J Appl Math. 2014;2014:2014.
3. Almeida TA. Ham and spam dataset. 2017. https://archive.ics.uci.edu/ml/datasets/sms+spam+collection. Accessed 2017.
4. Anti-Phishing Working Group (APWG). Phishing activity trends report. 2020. https://apwg.org/. Accessed 2020.
5. Arab M, Sohrabi MK. Proposing a new clustering method to detect phishing websites. Turk J Electr Eng Comput Sci. 2017;25(6):4757–67.
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献