Survey on Machine Learning and Deep Learning Techniques for Agriculture Land
Author:
Publisher
Springer Science and Business Media LLC
Link
https://link.springer.com/content/pdf/10.1007/s42979-021-00929-6.pdf
Reference104 articles.
1. Abdi AM. Land cover and land use classification performance of machine learning algorithms in a boreal landscape using Sentinel-2 data. GISci Remote Sens. 2020;57(1):1–20. https://doi.org/10.1080/15481603.2019.1650447.
2. Ahmadlou M, et al. Flood susceptibility mapping and assessment using a novel deep learning model combining multilayer perceptron and autoencoder neural networks. J Flood Risk Manag. 2021;14(1):1–22. https://doi.org/10.1111/jfr3.12683.
3. Aznar-sánchez JA, et al. Worldwide research trends on sustainable land use in agriculture. Land Use Policy. 2019;87:1–15.
4. do Bendini HN, et al. Detailed agricultural land classification in the Brazilian cerrado based on phenological information from dense satellite image time series. Int J Appl Earth Obs Geoinformation. 2019;82:1–10.
5. Benedetti P, et al. M 3 fusion : a deep learning architecture for satellite data fusion. IEEE J Sel Top Appl Earth Observ Remote Sens. 2018. https://doi.org/10.1109/JSTARS.2018.2876357.
Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Analysis of Courie-GAB-Peleg Models and Neural Networks in Jelly Candy by Corn Starch: Drying Kinetic and Moisture Sorption Isotherms;Food Biophysics;2024-09-13
2. Land-use and habitat quality prediction in the Fen River Basin based on PLUS and InVEST models;Frontiers in Environmental Science;2024-07-19
3. Machine learning and deep learning techniques for poultry tasks management: a review;Multimedia Tools and Applications;2024-03-28
4. ENVINet5 deep learning change detection framework for the estimation of agriculture variations during 2012–2023 with Landsat series data;Environmental Monitoring and Assessment;2024-02-05
5. Wheat Crop Disease Detection and Classification Using Machine Learning;Advances in Web Technologies and Engineering;2024-01-25
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3