The Hardest Hamiltonian Cycle Problem Instances: The Plateau of Yes and the Cliff of No

Author:

Sleegers JoeriORCID,van den Berg DaanORCID

Abstract

AbstractWe use two evolutionary algorithms to make hard instances of the Hamiltonian cycle problem. Hardness (or ‘fitness’), is defined as the number of recursions required by Vandegriend–Culberson, the best known exact backtracking algorithm for the problem. The hardest instances, all non-Hamiltonian, display a high degree of regularity and scalability across graph sizes. These graphs are found multiple times through independent runs, and by both evolutionary algorithms, suggesting the search space might contain monotonic paths towards the global maximum. For Hamiltonian-bound evolution, some hard graphs were found, but convergence is much less consistent. In this extended paper, we survey the neighbourhoods of both the hardest yes- and no-instances produced by the evolutionary algorithms. Results show that the hardest no-instance resides on top of a steep cliff, while the hardest yes-instance turns out to be part of a plateau of 27 equally hard instances. While definitive answers are far away, the results provide a lot of insight in the Hamiltonian cycle problem’s state space.

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

Reference49 articles.

1. Aguirre ASM, Vardi M. Random 3-sat and bdds: the plot thickens further. In: International conference on principles and practice of constraint programming. Springer; 2001. p. 121–36.

2. Bäck T, Fogel DB, Michalewicz Z. Handbook of evolutionary computation. Release. 1997;97(1):B1.

3. Bartz-Beielstein T, Doerr C, Berg D, Bossek J, Chandrasekaran S, Eftimov T, Fischbach A, Kerschke P, La Cava W, Lopez-Ibanez M et al (2020) Benchmarking in optimization: best practice and open issues. arXiv:2007.03488.

4. Braam F, van den Berg D. Which rectangle sets have perfect packings? Oper Res Perspect. 2022;9: 100211.

5. Brélaz D. New methods to color the vertices of a graph. Commun ACM. 1979;22(4):251–6.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Hamiltonian Cycles on Ammann-Beenker Tilings;Physical Review X;2024-07-10

2. An effective graph-analysis method to schedule a continuous galvanizing line with campaigning boundary constraints;Computers & Industrial Engineering;2024-06

3. Quantifying Instance Hardness of Protein Folding within the HP-model;2023 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB);2023-08-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3