Keypoint Changes for Fast Human Activity Recognition

Author:

Reid ShaneORCID,Coleman Sonya,Kerr Dermot,Vance Philip,O’Neill Siobhan

Abstract

AbstractHuman activity recognition has been an open problem in computer vision for almost 2 decades. During this time, there have been many approaches proposed to solve this problem, but very few have managed to solve it in a way that is sufficiently computationally efficient for real-time applications. Recently, this has changed, with keypoint-based methods demonstrating a high degree of accuracy with low computational cost. These approaches take a given image and return a set of joint locations for each individual within an image. In order to achieve real-time performance, a sparse representation of these features over a given time frame is required for classification. Previous methods have achieved this using a reduced number of keypoints, but this approach gives a less robust representation of the individual’s body pose and may limit the types of activity that can be detected. We present a novel method for reducing the size of the feature set, by calculating the Euclidian distance and the direction of keypoint changes across a number of frames. This allows for a meaningful representation of the individuals movements over time. We show that this method achieves accuracy on par with current state-of-the-art methods, while demonstrating real-time performance.

Publisher

Springer Science and Business Media LLC

Subject

Computer Science Applications,Computer Networks and Communications,Computer Graphics and Computer-Aided Design,Computational Theory and Mathematics,Artificial Intelligence,General Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Towards Human Activity Recognition in Smart Environments through Thermal Imaging;2024 IEEE Open Conference of Electrical, Electronic and Information Sciences (eStream);2024-04-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3