Which Explanation Should be Selected: A Method Agnostic Model Class Reliance Explanation for Model and Explanation Multiplicity

Author:

Gunasekaran AbiramiORCID,Mistry Pritesh,Chen Minsi

Abstract

AbstractFeature importance techniques offer valuable insights into machine learning (ML) models by conducting quantitative assessments of the individual contributions of variables to the model’s predictive outcomes. This quantification differs across various explanation methods and multiple almost equally accurate models (Rashomon models), creating explanation and model multiplicities. This resulted in a novel framework called method agnostic model class reliance range (MAMCR) for identifying a unified explanation across methods for multiple models. This consensus explanation provides each feature’s importance range for a class of models. Using state-of-the-art feature importance methods, experiments on popular machine learning datasets are conducted with a $$\varepsilon -$$ ε - threshold value of 0.1. The dataset-specific Rashomon set with 200 models, and the prediction accuracy of concerned reference models ($$m^*$$ m ) have produced encouraging results in obtaining a consensus model reliance explanation that is consistent across multiple methods. The experiment results ensure whether the prediction accuracy level of models has an impact on the importance range estimation of features. Also, the order of features suggested by MAMCR leads to better performance of models consistently in all the experimented datasets, than the state-of-the-art methods.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3