1. Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, Corrado GS, Davis A, Dean J, Devin M, Ghemawat S, Goodfellow I, Harp A, Irving G, Isard M, Jia Y, Jozefowicz R, Kaiser L, Kudlur M, Levenberg J, Mané D, Monga R, Moore S, Murray D, Olah C, Schuster M, Shlens J, Steiner B, Sutskever I, Talwar K, Tucker P, Vanhoucke V, Vasudevan V, Viégas F, Vinyals O, Warden P, Wattenberg M, Wicke M, Yu Y, Zheng X. TensorFlow: large-scale machine learning on heterogeneous systems (2015). https://www.tensorflow.org/. Software available from tensorflow.org Accessed May 2019.
2. Abramowitz M, Stegun IA. Handbook of mathematical functions: with formulas, graphs, and mathematical tables, vol. 55. US Government printing office Chelmsford: Courier Corporation; 1964.
3. Alterovitz R, Siméon T, Goldberg KY. The stochastic motion roadmap: A sampling framework for planning with Markov motion uncertainty. Robot Sci Syst. 2007;3:233–41.
4. Arslan O, Tsiotras P. Machine learning guided exploration for sampling-based motion planning algorithms. In: 2015 IEEE/RSJ International Conference on intelligent robots and systems (IROS), IEEE, 2015; p. 2646–52.
5. Atramentov A, LaValle SM. Efficient nearest neighbor searching for motion planning, vol. No. 02CH37292), In: Proceedings 2002 IEEE International Conference on robotics and automation (Cat. No. 02CH37292), vol. 1. IEEE 2002; p. 632–37.