Sequential Feature Selection and Machine Learning Algorithm-Based Patient’s Death Events Prediction and Diagnosis in Heart Disease
Author:
Publisher
Springer Science and Business Media LLC
Link
https://link.springer.com/content/pdf/10.1007/s42979-020-00370-1.pdf
Reference33 articles.
1. Towbin JA, Bowles NE. The failing heart. Nature. 2002;415(6868):227–33.
2. Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JG, Coats AJ, et al. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: the Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur Heart J. 2016;37(27):2129–200.
3. Aljaaf AJ, Al-Jumeily D, Hussain AJ, Dawson T, Fergus P, Al-Jumaily M. Predicting the likelihood of heart failure with a multi level risk assessment using decision tree. In: 2015 Third International Conference on Technological Advances in Electrical, Electronics and Computer Engineering (TAEECE); 2015. p. 101–106. IEEE.
4. Cowie MR. The heart failure epidemic: a UK perspective. Echo Res Pract. 2017;4(1):R15–20.
5. Dokken BB. The pathophysiology of cardiovascular disease and diabetes: beyond blood pressure and lipids. Diabetes Spectrum. 2008;21(3):160–5.
Cited by 42 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Comparative Study of Conventional Machine Learning versus Deep Learning-Based Approaches for Tool Condition Assessments in Milling Processes;Applied Sciences;2024-07-06
2. Myocardial Infarction Diagnosis: Pattern Analysis of ECG Report Images Using Machine Learning Techniques;2024 Third International Conference on Distributed Computing and Electrical Circuits and Electronics (ICDCECE);2024-04-26
3. Enhancing Myocardial Infarction Diagnosis: Insights from ECG Image Analysis and Machine Learning;SN Computer Science;2024-04-18
4. DFS-WR: A novel dual feature selection and weighting representation framework for classification;Information Fusion;2024-04
5. Optimizing Random Forests to Detect Intrusion in the Internet of Things;2024
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3