Fast Hubness-Reduced Nearest Neighbor Search for Entity Alignment in Knowledge Graphs

Author:

Obraczka DanielORCID,Rahm Erhard

Abstract

AbstractThe flexibility of Knowledge Graphs to represent heterogeneous entities and relations of many types is challenging for conventional data integration frameworks. In order to address this challenge the use of Knowledge Graph Embeddings (KGEs) to encode entities from different data sources into a common lower-dimensional embedding space has been a highly active research field. It was recently discovered however that KGEs suffer from the so-called hubness phenomenon. If a dataset suffers from hubness some entities become hubs, that dominate the nearest neighbor search results of the other entities. Since nearest neighbor search is an integral step in the entity alignment procedure when using KGEs, hubness is detrimental to the alignment quality. We investigate a variety of hubness reduction techniques and (approximate) nearest neighbor libraries to show we can perform hubness-reduced nearest neighbor search at practically no cost w.r.t speed, while reaping a significant improvement in quality. We ensure the statistical significance of our results with a Bayesian analysis. For practical use and future research we provide the open-source python library at https://github.com/dobraczka/kiez.

Funder

Bundesministerium für Bildung und Forschung

Universität Leipzig

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3