Hydra: Practical Metadata Security for Contact Discovery, Messaging, and Voice Calls

Author:

Schatz David,Rossberg Michael,Schaefer Guenter

Abstract

AbstractProtecting communications’ metadata can be as important as protecting their content, i.e., recognizing someone contacting a medical service may already allow to infer sensitive information. There are numerous proposals to implement anonymous communications, yet none provides it in a strong (but feasible) threat model in an efficient way. We propose Hydra, an anonymity system that is able to efficiently provide metadata security for a wide variety of applications. Main idea is to use latency-aware, padded, and onion-encrypted circuits even for connectionless applications. This allows to implement strong metadata security for contact discovery and text-based messages with relatively low latency. Furthermore, circuits can be upgraded to support voice calls, real-time chat sessions, and file transfers—with slightly reduced anonymity in presence of global observers. We evaluate Hydra using an analytical model as well as call simulations. Compared to other systems for text-based messaging, Hydra is able to decrease end-to-end latencies by an order of magnitude without degrading anonymity. Using a dataset generated by performing latency measurements in the Tor network, we further show that Hydra is able to support anonymous voice calls with acceptable quality of service in real scenarios. A first prototype of Hydra is published as open source.

Funder

Technische Universität Ilmenau

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Pirates: Anonymous Group Calls over Fully Untrusted Infrastructure;Lecture Notes in Computer Science;2024

2. Evaluating Statistical Disclosure Attacks and Countermeasures for Anonymous Voice Calls;Proceedings of the 18th International Conference on Availability, Reliability and Security;2023-08-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3