Overcoming Long Inference Time of Nearest Neighbors Analysis in Regression and Uncertainty Prediction

Author:

Koutenský František,Šimánek Petr,Čepek Miroslav,Kovalenko AlexanderORCID

Abstract

AbstractThe intuitive approach of comparing like with like, forms the basis of the so-called nearest neighbor analysis, which is central to many machine learning algorithms. Nearest neighbor analysis is easy to interpret, analyze, and reason about. It is widely used in advanced techniques such as uncertainty estimation in regression models, as well as the renowned k-nearest neighbor-based algorithms. Nevertheless, its high inference time complexity, which is dataset size dependent even in the case of its faster approximated version, restricts its applications and can considerably inflate the application cost. In this paper, we address the problem of high inference time complexity. By using gradient-boosted regression trees as a predictor of the labels obtained from nearest neighbor analysis, we demonstrate a significant increase in inference speed, improving by several orders of magnitude. We validate the effectiveness of our approach on a real-world European Car Pricing Dataset with approximately $$4.2 \times 10^6$$ 4.2 × 10 6 rows for both residual cost and price uncertainty prediction. Moreover, we assess our method’s performance on the most commonly used tabular benchmark datasets to demonstrate its scalability. The link is to github repository where the code is available: https://github.com/koutefra/uncertainty_experiments.

Funder

Technologická Agentura České Republiky

Czech Technical University in Prague

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3