Deep Learning-Based Acoustic Feature Representations for Dysarthric Speech Recognition

Author:

Latha M.ORCID,Shivakumar M.,Manjula G.,Hemakumar M.,Kumar M. Keerthi

Publisher

Springer Science and Business Media LLC

Subject

Computer Science Applications,Computer Networks and Communications,Computer Graphics and Computer-Aided Design,Computational Theory and Mathematics,Artificial Intelligence,General Computer Science

Reference14 articles.

1. Latha M, Shivakumar M, Manjula R. A study of acoustic characteristics, prosodic and distinctive features of dysarthric speech. Grenze Int J Comput Theory Eng (Spec Issue). 2018;2018:228–35.

2. Farhadipour A, Veisi H, Asgari M, Keyvanrad MA. Dysarthric speaker identification with different degrees of dysarthria severity using deep belief networks. ETRI J. 2018;40(5):643–52.

3. Mohammed SY, Ahmed SS, Brahim ZF, AsmaBouchair B. Improving dysarthric speech recognition using empirical mode decomposition and convolutional neural network. EURASIP J Audio Speech Music Process. 2020;1:1–7.

4. Young S, Evermann G, Gales M, Hain T, Kershaw D, Moore G, Odell J, Ollason D, Povey D, Valtchev V, et al. The htk book (for htk version 3.3). Cambridge University Engineering Department, 2005. 2006.

5. Oue S, Marxer R, Rudzicz F. Automatic dysfluency detection in dysarthric speech using deep belief networks. In: Proceedings of SLPAT 2015: 6th workshop on speech and language processing for assistive technologies. 2015. p. 60–4.

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3