An Exploratory Study on Utilising the Web of Linked Data for Product Data Mining

Author:

Zhang ZiqiORCID,Song Xingyi

Abstract

AbstractThe Linked Open Data practice has led to a significant growth of structured data on the Web. While this has created an unprecedented opportunity for research in the field of Natural Language Processing, there is a lack of systematic studies on how such data can be used to support downstream NLP tasks. This work focuses on the e-commerce domain and explores how we can use such structured data to create language resources for product data mining tasks. To do so, we process billions of structured data points in the form of RDF n-quads, to create multi-million words of product-related corpora that are later used in three different ways for creating language resources: training word-embedding models, continued pre-training of BERT-like language models, and training machine translation models that are used as a proxy to generate product-related keywords. These language resources are then evaluated in three downstream tasks, product classification, linking, and fake review detection using an extensive set of benchmarks. Our results show word embeddings to be the most reliable and consistent method to improve the accuracy on all tasks (with up to 6.9% points in macro-average F1 on some datasets). Contrary to some earlier studies that suggest a rather simple but effective approach such as building domain-specific language models by pre-training using in-domain corpora, our work serves a lesson that adapting these methods to new domains may not be as easy as it seems. We further analyse our datasets and reflect on how our findings can inform future research and practice.

Publisher

Springer Science and Business Media LLC

Subject

Computer Science Applications,Computer Networks and Communications,Computer Graphics and Computer-Aided Design,Computational Theory and Mathematics,Artificial Intelligence,General Computer Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3