Forecasting ATM Cash Demand Before and During the COVID-19 Pandemic Using an Extensive Evaluation of Statistical and Machine Learning Models
Author:
Publisher
Springer Science and Business Media LLC
Link
https://link.springer.com/content/pdf/10.1007/s42979-021-01000-0.pdf
Reference47 articles.
1. Adebiyi AA, Adewumi AO, Ayo CK. Comparison of ARIMA and artificial neural networks models for stock price prediction. J Appl Math. 2014;2014.
2. Aghaaminiha M, Ghanadian SA, Ahmadi E, Farnoud AM. A machine learning approach to estimation of phase diagrams for three-component lipid mixtures. Biochim Biophys Acta Biomembr. 2020;1862(9):183350.
3. Aghaaminiha M, Mehrani R, Reza T, Sharma S. Comparison of machine learning methodologies for predicting kinetics of hydrothermal carbonization of selective biomass. Biomass Convers Biorefin. 2021; p. 1–10.
4. Andrawis RR, Atiya AF, El-Shishiny H. Forecast combinations of computational intelligence and linear models for the NN5 time series forecasting competition. Int J Forecast. 2011;27:672–88.
5. Arabani SP, Komleh HE. The improvement of forecasting ATMs cash demand of iran banking network using convolutional neural network. Arab J Sci Eng. 2019;44:3733–43.
Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Modelling and optimization of ATM cash-loading under stochastic demand;Discover Analytics;2024-09-06
2. Effectiveness of ATM withdrawal forecasting methods under different market conditions;Technological Forecasting and Social Change;2024-03
3. Development of a novel dynamic nosocomial infection risk management method for COVID-19 in outpatient settings;BMC Infectious Diseases;2024-02-19
4. Statistical and Artificial Intelligence Based Forecasting Approaches for Cash Demand Problem of Automated Teller Machines;Academic Platform Journal of Engineering and Smart Systems;2024-01-31
5. Technology-Profitability Paradox in Banking Sector: Evidence from Palestine;Journal of the Knowledge Economy;2023-12-26
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3