Image Abstraction Framework as a Pre-processing Technique for Accurate Classification of Archaeological Monuments Using Machine Learning Approaches
Author:
Funder
Vision Group of Science and Technology, Govt of Karnataka
Publisher
Springer Science and Business Media LLC
Link
https://link.springer.com/content/pdf/10.1007/s42979-021-00935-8.pdf
Reference101 articles.
1. Kumar MPP, Poornima B, Nagendraswamy HS, et al. A comprehensive survey on non-photorealistic rendering and benchmark developments for image abstraction and stylization.Springer, Iran J Comput Sci. 2019;2:131–65. https://doi.org/10.1007/s42044-019-00034-1.
2. Pavan Kumar MP, Poornima B, Nagendraswamy HS, Manjunath C, Rangaswamy BE. Structure preserving image abstraction and artistic stylization from complex background and low illuminated images. Ictact J Image Video Proc. 2020;11(1). https://doi.org/10.21917/ijivp.2020.0316.
3. Pan SJ, Yang Q. A survey on transfer learning. IEEE Trans Knowl Data Eng. 2010;22(10):1345–59.
4. Kazimi B, Thiemann F, Malek K, Sester M, Khoshelham K. Deep learning for archaeological object detection in airborne laser scanning data. In: Proceedings of the 2nd workshop on computing techniques for spatio-temporal data in archaeology and cultural heritage co-located with 10th international conference on geographical information science. 2018. https://doi.org/10.4230/LIPIcs.COARCH.2018.
5. Haralick RM, Shanmugam K, Dinstein I. Textural features for image classification. IEEE Trans Syst Man Cybern. 1973;6:610–21.
Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A deep variational convolutional Autoencoder for unsupervised features extraction of ceramic profiles. A case study from central Italy;Journal of Archaeological Science;2022-08
2. SVMnet: Non-Parametric Image Classification Based on Convolutional Ensembles of Support Vector Machines for Small Training Sets;IEEE Access;2022
3. Pixelated Image Abstraction via Power Diagram;Communications in Computer and Information Science;2022
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3