On the Performance Analyses of a Modified Force Field Algorithm and Neural Network Approach for Obstacle Avoidance in Swarm Robotics

Author:

Balasubramanian GirishORCID,Muthukumaraswamy Senthil ArumugamORCID,Kong XianwenORCID

Abstract

AbstractObstacle avoidance is a major hurdle when implementing mobile robots and swarm robots. Swarm robots work in groups and therefore require an efficient and functional obstacle avoidance algorithm to stay collision free between themselves and their surroundings. This paper reviews previous research in obstacle avoidance implementation using the force field method (FFM), also known as potential field method (PFM) and a neutral network approach. Moreover, this paper aims to execute simulations using a modified force field algorithm and a neural network approach and compare them. The obtained results are analyzed to identify the performance characteristics and the time taken to perform tasks using a singular mobile robot against a swarm robot environment consisting of four and ten robots, respectively, in both simulation cases. Simulations showed that the algorithm was successful in navigating obstacles for both single and swarm robot environments. A single robot was found to take up to 340% longer to arrive at the required location compared to the first robot in the experiment. Moreover, it was found that the neural network approach showed ~ 27% improvement over the modified force field algorithm when it comes to cases where more than four robots are being used.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3