On the Impact of Input Models on the Fault Detection Capabilities of Combinatorial Testing

Author:

Baumann Carmen,Koroglu Yavuz,Wotawa FranzORCID

Abstract

AbstractTesting is an important activity to detect faults before software deployment. We focus on black-box combinatorial testing, where fault detection is one of the main objectives. In this paper, we argue that input model abstraction notably impacts the fault detection capability of a combinatorial test suite. First, we present experiments from previous work that support this argument. We then perform new experiments on a more diverse set of programs. These experiments use mutation testing to estimate fault detection capability, but we also include structural coverage measures in the new experiments. Finally, we elaborate on two possible improvements to obtain an optimal input abstraction strategy for not just continuous but all input domains. Both experiments suggest that input abstraction affects the fault detection capability. We claim that the improvements will produce a better input abstraction with which we can achieve better fault detection capability without increasing the test suite size.

Funder

Christian Doppler Forschungsgesellschaft

Graz University of Technology

Publisher

Springer Science and Business Media LLC

Reference44 articles.

1. Utting M, Legeard B. Practical model-based testing: a tools approach. Burlington: Morgan Kaufmann; 2010.

2. Schieferdecker I. Model-based testing. IEEE Softw. 2012;29:14–8.

3. Nie C, Leung H. A survey of combinatorial testing. ACM Comput Surv (CSUR). 2011;43:1–29.

4. Kuhn D, Kacker R, Lei Y. Introduction to combinatorial testing Chapman & Hall/CRC innovations in software engineering and software development series. Milton Park: Taylor & Francis; 2013.

5. Ali A, Maghawry HA, Badr N. Model-based test case generation approach for mobile applications load testing using ocl enhanced activity diagrams. In: 2021 tenth international conference on intelligent computing and information systems (ICICIS). 2021. p. 493–99.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3