Transfer Learning Applied to Reinforcement Learning-Based HVAC Control
Author:
Publisher
Springer Science and Business Media LLC
Link
https://link.springer.com/content/pdf/10.1007/s42979-020-00146-7.pdf
Reference28 articles.
1. Barrett E, Linder SP. Autonomous HVAC control. A reinforcement learning approach. 2015. https://doi.org/10.1007/978-3-319-23461-8-1.
2. Gopalakrishnan Kasthurirangan, Khaitan Siddhartha K, Choudhary Alok, Agrawal Ankit. Deep Convolutional Neural Networks with transfer learning for computer vision-based data-driven pavement distress detection. Constr Build Mater. 2017;157:322–30.
3. Shin Hoo-Chang, Roth Holger, Gao Mingchen, Le Lu, Ziyue Xu, Nogues Isabella, Yao Jianhua, Mollura Daniel J, Summers Ronald M. Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning. IEEE Trans Med Imaging. 2016;35:1285–98.
4. Long Mingsheng, Wang Jianmin, Ding Guiguang, Sun Jia-Guang, Philip SYu. Transfer feature learning with joint distribution adaptation. IEEE Int Conf Comput Vis. 2013;2013:2200–7.
5. Bianchi Reinaldo AC, Celiberto Luiz A, Santos Paulo E, Matsuura Jackson P, Lopez Ramon, de Mantaras Ramon Lopez. Transferring knowledge as heuristics in reinforcement learning: a case-based approach. Artif Intell. 2015;226:102–21.
Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Multi-source transfer learning method for enhancing the deployment of deep reinforcement learning in multi-zone building HVAC control;Energy and Buildings;2024-11
2. Robust deep reinforcement learning for personalized HVAC system;Energy and Buildings;2024-09
3. Novel machine learning paradigms-enabled methods for smart building operations in data-challenging contexts: Progress and perspectives;National Science Open;2024-02-02
4. Enhancing HVAC control systems through transfer learning with deep reinforcement learning agents;Smart Energy;2024-02
5. Evaluating Reinforcement Learning Algorithms in Residential Energy Saving and Comfort Management;Energies;2024-01-25
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3