Generalised Pattern Search Based on Covariance Matrix Diagonalisation

Author:

Neri FerranteORCID,Rostami Shahin

Abstract

AbstractPattern Search is a family of gradient-free direct search methods for numerical optimisation problems. The characterising feature of pattern search methods is the use of multiple directions spanning the problem domain to sample new candidate solutions. These directions compose a matrix of potential search moves, that is the pattern. Although some fundamental studies theoretically indicate that various directions can be used, the selection of the search directions remains an unaddressed problem. The present article proposes a procedure for selecting the directions that guarantee high convergence/high performance of pattern search. The proposed procedure consists of a fitness landscape analysis to characterise the geometry of the problem by sampling points and selecting those whose objective function values are below a threshold. The eigenvectors of the covariance matrix of this distribution are then used as search directions for the pattern search. Numerical results show that the proposed method systematically outperforms its standard counterpart and is competitive with modern complex direct search and metaheuristic methods.

Publisher

Springer Science and Business Media LLC

Reference52 articles.

1. Beale E. On an iterative method for finding a local minimum of a function of more than one variable. Tech. rep.: Princeton University; 1958.

2. Box MJ, Davies D, Swann WH. Non-linear optimisation techniques. London: Oliver & Boyd; 1969.

3. Brent RP. Algorithms for minimization without derivatives. Englewood Cliffs: Prentice-Hall; 1973.

4. Caponio A, Cascella GL, Neri F, Salvatore N, Sumner M. A fast adaptive memetic algorithm for on-line and off-line control design of PMSM drives. IEEE Trans Syst Man Cybern Part B. 2007;37(1):28–41.

5. Caraffini F, Neri F, Iacca G, Mol A. Parallel memetic structures. Inf Sci. 2013;227:60–82.

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3