Interpretation of Swedish Sign Language Using Convolutional Neural Networks and Transfer Learning

Author:

Halvardsson GustafORCID,Peterson Johanna,Soto-Valero CésarORCID,Baudry BenoitORCID

Abstract

AbstractThe automatic interpretation of sign languages is a challenging task, as it requires the usage of high-level vision and high-level motion processing systems for providing accurate image perception. In this paper, we use Convolutional Neural Networks (CNNs) and transfer learning to make computers able to interpret signs of the Swedish Sign Language (SSL) hand alphabet. Our model consists of the implementation of a pre-trained InceptionV3 network, and the usage of the mini-batch gradient descent optimization algorithm. We rely on transfer learning during the pre-training of the model and its data. The final accuracy of the model, based on 8 study subjects and 9400 images, is 85%. Our results indicate that the usage of CNNs is a promising approach to interpret sign languages, and transfer learning can be used to achieve high testing accuracy despite using a small training dataset. Furthermore, we describe the implementation details of our model to interpret signs as a user-friendly web application.

Funder

Knut och Alice Wallenbergs Stiftelse

Royal Institute of Technology

Publisher

Springer Science and Business Media LLC

Reference44 articles.

1. World Health Organization. Addressing the rising prevalence of hearing loss. https://apps.who.int/iris/bitstream/handle/10665/260336/9789241550260-eng.pdf?sequence=1&isAllowed=y, 2018. [Online; accessed 30-April-2020].

2. Paul PV. What’s it like to be deaf? reflections on signed language, sustainable development, and equal opportunities. American Annals of the Deaf Gallaudet University Press, 163, 2018.

3. Emmorey K. Language, Cognition, and the Brain: Insights From Sign Language Research. New Jersy: Lawrence Erlbaum Associates Inc; 2002.

4. Ray S. A quick review of machine learning algorithms. 2019 International Conference on Machine Learning, Big Data, Cloud and Parallel Computing (COMITCon), 2019.

5. Kaur T. Implementation of backpropagation algorithm: A neural network approach for pattern recognition. International Journal of Engineering Research and Development, 1, 2012.

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3