Estimating the Value of Electricity Storage in Chile Through Planning Models with Stylized Operation: How Wrong Can It Be?

Author:

Pereira-Bonvallet Eduardo,Moreno RodrigoORCID,Muñoz Francisco D.

Abstract

Abstract Purpose of Review In light of the increased renewables penetration in power systems around the world, policy-makers, regulators, planners, and investors are significantly interested in determining the participation of energy storage in prospective scenarios of future generation capacity. In this context, this paper demonstrates the numerical errors associated with electricity planning models with stylized operation, which are of common use nowadays. We particularly focus on errors when quantifying the benefits of pumped hydro storage (PHS). Recent Findings The latest research identifies important distortions in the results of infrastructure expansion planning problems originated due to a stylized representation of power system operation. These distortions have been particularly emphasized in power systems with increased penetration of renewables generation that necessitate higher levels of flexibility to deal with variability and uncertainty. Summary Apart from providing a comprehensive literature review in this subject, we provide additional and novel quantitative evidence focusing on the impacts of additional PHS capacity in power systems. Thus, we compare the outputs from two models: (i) a planning model with a stylized operation that ignores operational details in long-term investment analysis, approximating operational costs through a discretized version of the load curve (i.e., time slice representation), and (ii) a state-of-the-art, advanced planning model that recognizes operational details, including hourly resolution and technical limitations of generation plants (through the so-called unit commitment variables and constraints). Both models co-optimize generation and transmission capacity by minimizing total system investment and operational costs. Through several case studies on the Chilean power network by 2025, it is demonstrated that the benefits in terms of cost savings from PHS are significantly underestimated by the stylized model that ignores operational details. In effect, the stylized model undermines both peaking generation capacity and network capacity deferred by storage as well as the operational cost savings due to reserves and flexibility provisions from PHS. Moreover, it is shown that while CO2 emissions are reduced in the advanced model (as expected), these are increased in the stylized model, which corresponds to a remarkable misleading result. Finally, revenue projections of PHS by using primal and dual information are calculated from both optimization approaches, demonstrating that the stylized approach is biased and erroneously diminishes the PHS revenue in the case of a bulk, transmission-connected PHS in Chile. These conclusions are of particular interest for policy-makers, regulators, planners, and investors in Chile who seek to identify both PHS projects that are socially optimal (minimizing overall system costs) and privately profitable (whose revenues exceed costs).

Funder

Anid

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

Reference43 articles.

1. International Renewable Energy Agency (IRENA), Renewable power generation costs in 2018, https://www.irena.org/publications/2019/May/Renewable-power-generation- costs-in-2018 (may 2019).

2. REN21, Renewables 2019 global status report, https://www.ren21.net/wp-content/uploads/2019/05/gsr_2020_full_report_en.pdf. 2019.

3. Strbac G, Aunedi M, Konstantelos I, Moreira R, Teng F, Moreno R, Pudjianto D, Laguna A, Papadopoulos P. Opportunities for energy storage: Assessing whole-system economic benefits of energy storage in future electricity systems. IEEE Power Energy Mag 2017;15(5):32–41.

4. Moreno R, Moreira R, Strbac G. A milp model for optimising multi-service portfolios of distributed energy storage. Appl Energy 2015;137:554–566.

5. Strbac G, Aunedi M, Pudjianto D, et al. 2012. Strategic assessment of the role and value of energy storage systems in the UK low carbon energy future. Technical report.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3