Estimation of the Surface Fluxes for Heat and Momentum in Unstable Conditions with Machine Learning and Similarity Approaches for the LAFE Data Set

Author:

Wulfmeyer VolkerORCID,Pineda Juan Manuel Valencia,Otte Sebastian,Karlbauer Matthias,Butz Martin V.,Lee Temple R.,Rajtschan Verena

Abstract

AbstractMeasurements of three flux towers operated during the land atmosphere feedback experiment (LAFE) are used to investigate relationships between surface fluxes and variables of the land–atmosphere system. We study these relations by means of two machine learning (ML) techniques: multilayer perceptrons (MLP) and extreme gradient boosting (XGB). We compare their flux derivation performance with Monin–Obukhov similarity theory (MOST) and a similarity relationship using the bulk Richardson number (BRN). The ML approaches outperform MOST and BRN. Best agreement with the observations is achieved for the friction velocity. For the sensible heat flux and even more so for the latent heat flux, MOST and BRN deviate from the observations while MLP and XGB yield more accurate predictions. Using MOST and BRN for latent heat flux, the root mean square errors (RMSE) are 107 Wm$$^{-2}$$ - 2 and 121 Wm$$^{-2}$$ - 2 , respectively, as well as the intercepts of the regression lines are $$\approx 110$$ 110  Wm$$^{-2}$$ - 2 . For the ML methods, the RMSEs reduce to 31 Wm$$^{-2}$$ - 2 for MLP and 33 Wm$$^{-2}$$ - 2 for XGB as well as the intercepts to just 4 Wm$$^{-2}$$ - 2 for MLP and $$-1$$ - 1  Wm$$^{-2}$$ - 2 for XGB with slopes of the regression lines close to 1, respectively. These results indicate significant deficiencies of MOST and BRN, particularly for the derivation of the latent heat flux. In fact, in contrast to the established theories, feature importance weighting demonstrates that the ML methods base their improved derivations on net radiation, the incoming and outgoing shortwave radiations, the air temperature gradient, and the available water contents, but not on the water vapor gradient. The results imply that further studies of surface fluxes and other turbulent variables with ML techniques provide great promise for deriving advanced flux parameterizations and their implementation in land–atmosphere system models.

Funder

BMBF

US Department of Energy

Goddard Space Flight Center

Earth System Research Laboratories

Deutsche Forschungsgemeinschaft

Publisher

Springer Science and Business Media LLC

Subject

Atmospheric Science

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3