Entrainment Rates and Their Synoptic Dependence on Wind Speed Aloft in California's Central Valley

Author:

Caputi Dani J.ORCID,Trousdell Justin,Mehrotra Shobhit,Conley Stephen,Alexander G. Aaron,Oldroyd Holly J.,Faloona Ian

Abstract

AbstractDaytime atmospheric boundary layer (ABL) dynamics—including potential temperature budgets, water vapour budgets, and entrainment rates—are presented from in situ flight data taken on six afternoons near Fresno in the San Joaquin Valley (SJV) of California during July/August 2016. The flights took place as a part of the California Baseline Ozone Transport Study aimed at investigating transport pathways of air entering the Central Valley from offshore and mixing down to the surface. Midday entrainment velocity estimates ranged from 0.8 to 5.4 cm s−1 and were derived from a combination of continuously determined ABL heights during each flight and model-derived subsidence rates, which averaged -2.0 cm s−1 in the flight region. A strong correlation was found between entrainment velocity (normalized by the convective velocity scale) and an inverse bulk ABL Richardson number, suggesting that wind shear at the ABL top plays a significant role in driving entrainment. Similarly, we found a strong correlation between the entrainment efficiency (the ratio of entrainment to surface heat fluxes with an average of 0.23 ± 0.15) and the wind speed at the ABL top. We explore the synoptic conditions that generate higher winds near the ABL top and propose that warm anomalies in the southern Sierra Nevada mountains promote increased entrainment. Additionally, a method is outlined to estimate turbulence kinetic energy, convective velocity scale (w*), and the surface sensible heat flux in the ABL from a slow, airborne wind measurement system using mixed-layer similarity theory.

Funder

California Air Resources Board

U.S. Environmental Protection Agency

Publisher

Springer Science and Business Media LLC

Subject

Atmospheric Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Eddy dissipation rates in the dryline boundary layer;Environmental Fluid Mechanics;2023-10-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3