Effect of Small-Scale Topographical Variations and Fetch from Roughness Elements on the Stable Boundary Layer Turbulence Statistics

Author:

Bhimireddy Sudheer R.,Sun Jielun,Wang Junming,Kristovich David A. R.,Hiscox April L.

Abstract

AbstractUnderstanding the influence of roughness and terrain slope on stable boundary layer turbulence is challenging. This is investigated using observations collected from October to November of 2018 during the Stable Atmospheric Variability ANd Transport (SAVANT) field campaign conducted in a shallow sloping Midwestern field. We analyze the turbulence velocity scale and its variation with the mean wind speed using observations up to 10–20 m on four meteorological towers located along a shallow gully. The roughness length for momentum over this complex terrain varied with wind direction from 0.0049 m to a maximum of 0.12 m for winds coming through deciduous trees present in the field. The variation of the turbulence velocity with wind speed shows a transition from a weak wind regime to a stronger wind regime, as reported by past studies. This transition is not observed for winds coming from the tree area, where turbulence is enhanced even for weak wind speeds. For weak stratification and stronger winds, the turbulent velocity scale increased with an increase in roughness while the terrain slope is seen to have a weak influence. The sizes of the dominant turbulent eddies seen from the vertical velocity power spectra are observed to be larger for winds coming through the tree area. The turbulence enhancement by the trees is found to be strong within a fetch distance of 7 times the tree height and not observable at 16 times of the tree height.

Publisher

Springer Science and Business Media LLC

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3