On the Non-monotonic Variation of the Entrainment Buoyancy Flux with Wind Shear

Author:

Fodor Katherine,Mellado Juan PedroORCID,Haghshenas Armin

Abstract

AbstractThe magnitude of the entrainment buoyancy flux, and hence the growth rate of the convective boundary layer, does not increase monotonically with wind shear. Explanations for this have previously been based on wind-shear effects on the turbulence kinetic energy. By distinguishing between turbulent and non-turbulent regions, we provide an alternative explanation based on two competing wind-shear effects: the initial decrease in the correlation between buoyancy and vertical velocity fluctuations, and the increase in the turbulent area fraction. The former is determined by the change in the dominant forcing; without wind shear, buoyancy fluctuations drive vertical velocity fluctuations and the two are thus highly correlated; with wind shear, vertical velocity fluctuations are partly determined by horizontal velocity fluctuations via the transfer of kinetic energy through the pressure–strain correlation, thus reducing their correlation with the buoyancy field. The increasing turbulent area fraction, on the other hand, is determined by the increasing shear production of turbulence kinetic energy inside the entrainment zone. We also show that the dependence of these conditional statistics on the boundary-layer depth and on the magnitude of the wind shear can be captured by a single non-dimensional variable, which can be interpreted as an entrainment-zone Froude number.

Publisher

Springer Science and Business Media LLC

Subject

Atmospheric Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3