Combining Weather Station Data and Short-Term LiDAR Deployment to Estimate Wind Energy Potential with Machine Learning: A Case Study from the Swiss Alps

Author:

Kristianti Fanny,Dujardin Jérôme,Gerber Franziska,Huwald Hendrik,Hoch Sebastian W.,Lehning Michael

Abstract

AbstractWind energy potential in complex terrain is still poorly understood and difficult to quantify. With Switzerland’s current efforts to shift to renewable energy resources, it is now becoming even more crucial to investigate the hidden potential of wind energy. However, the country’s topography makes the assessment very challenging. We present two measurement campaigns at Lukmanier and Les Diablerets, as representative areas of the complex terrain of the Swiss Alps. A general understanding of local wind flow characteristics is achieved by comparing wind speed measurements from a near-surface ultra-sonic anemometer and from light detection and ranging (LiDAR) measurements further aloft. The measurements show how the terrain modifies synoptic wind for example through katabatic flows and effects of local topography. We use an artificial neural network (ANN) to combine the data from the measurement campaign with wind speed measured by weather stations in the surrounding area of the study sites. The ANN approach is validated against a set of LiDAR measurements which were not used for model calibration and also against wind speed measurements from a 25-meter mast, previously installed at Lukmanier. The statistics of the ANN output obtained from multi-year time series of nearby weather stations match accurately the ones of the mast data. However, for the rather short validation periods from the LiDAR, the ANN has difficulties in predicting lowest wind speeds at both sites, and highest wind speeds at Les Diablerets.

Funder

EPFL Lausanne

Publisher

Springer Science and Business Media LLC

Subject

Atmospheric Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Influence of air flow features on alpine wind energy potential;Frontiers in Energy Research;2024-05-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3