Improving Numerical Dispersion Modelling in Built Environments with Data Assimilation Using the Iterative Ensemble Kalman Smoother

Author:

Defforge Cécile L.,Carissimo BertrandORCID,Bocquet Marc,Bresson Raphaël,Armand Patrick

Abstract

AbstractAir-pollution modelling at the local scale requires accurate meteorological inputs such as from the velocity field. These meteorological fields are generally simulated with microscale models (here Code_Saturne), which are forced with boundary conditions provided by larger scale models or observations. Local atmospheric simulations are very sensitive to the boundary conditions, whose accurate estimation is difficult but crucial. When observations of the wind speed and turbulence or pollutant concentration are available inside the domain, they provide supplementary information via data assimilation, to enhance the simulation accuracy by modifying the boundary conditions. Among the existing data assimilation methods, the iterative ensemble Kalman smoother (IEnKS) is adapted to urban-scale simulations. This method has already been found to increase the accuracy of wind-resource assessment. Here we assess the ability of the IEnKS method to improve scalar-dispersion modelling—an important component of air-quality modelling—by assimilating perturbed measurements inside the urban canopy. To test the data assimilation method in urban conditions, we use the observations provided by the Mock Urban Setting Test field campaign and consider cases with neutral and stable conditions, and the boundary conditions consisting of the horizontal velocity components and turbulence. We prove the capacity of the IEnKS method to assimilate observations of velocity as well as pollutant concentration. In both cases, the accuracy of pollutant concentration estimates is enhanced by 40–60%. We also show that assimilating both types of observations allows further improvements of turbulence predictions by the model.

Publisher

Springer Science and Business Media LLC

Subject

Atmospheric Science

Reference38 articles.

1. Albriet B, Sartelet K, Lacour S, Carissimo B, Seigneur C (2010) Modelling aerosol number distributions from a vehicle exhaust with an aerosol CFD model. Atmos Environ 44(8):1126–1137

2. Archambeau F, Méchitoua N, Sakiz M (2004) Code Saturne: a finite volume code for the computation of turbulent incompressible flows-industrial applications. Int J Finite Volumes 1:1–62

3. Asch M, Bocquet M, Nodet M (2016) Data assimilation: methods, algorithms, and applications. Society for Industrial and Applied Mathematics, Philadelphia

4. Auroux D, Blum J (2008) A nudging-based data assimilation method: the Back and Forth Nudging (BFN) algorithm. Nonlinear Process Geophys 15:305–319

5. Bahlali M (2018) Adaptation de la modélisation hybride eulérienne/lagrangienne stochastique de Code\_Saturne à la dispersion atmosphérique de polluants à l’échelle micro-météorologique et comparaison à la méthode eulérienne. Ph.D. thesis, Université Paris-Est. http://www.theses.fr/2018PESC1047/document

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3