Anisotropy of Unstably Stratified Near-Surface Turbulence

Author:

Stiperski IvanaORCID,Chamecki MarceloORCID,Calaf MarcORCID

Abstract

AbstractClassic Monin–Obukov similarity scaling states that in a stationary, horizontally homogeneous flow, in the absence of subsidence, turbulence is dictated by the balance between shear production and buoyancy production/destruction, whose ratio is characterized by a single universal scaling parameter. An evident breakdown in scaling is observed though, through large scatter in traditional scaling relations for the horizontal velocity variances under unstable stratification, or more generally in complex flow conditions. This breakdown suggests the existence of processes other than local shear and buoyancy that modulate near-surface turbulence. Recent studies on the role of anisotropy in similarity scaling have shown that anisotropy, even if calculated locally, may encode the information about these missing processes. We therefore examine the possible processes that govern the degree of anisotropy in convective conditions. We first use the reduced turbulence-kinetic-energy budget to show that anisotropy in convective conditions cannot be uniquely described by a balance of buoyancy and shear production and dissipation, but that other terms in the budget play an important role. Subsequently, we identify a ratio of local time scales that acts as a proxy for the anisotropic state of convective turbulence. This ratio can be used to formulate a new non-dimensional group. Results show that building on this approach the role of anisotropy in scaling relations over complex terrain can be placed into a more generalized framework.

Funder

Austrian Science Fund

National Science Foundation

Alexander von Humboldt-Stiftung

Publisher

Springer Science and Business Media LLC

Subject

Atmospheric Science

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3