A Novel Similarity Approach for Describing the Bulk Shear in the Atmospheric Surface Layer

Author:

Urbancic G. H.ORCID,Stiperski I.ORCID,Holtslag A. A. M.ORCID,Mosso S.ORCID,Vihma T.ORCID

Abstract

AbstractThe Monin–Obukhov Similarity Theory (MOST) is a cornerstone of boundary layer meteorology and the basis of most parameterizations of the atmospheric surface layer. Due to its significance for observations and modelling, we generalize the dimensional analysis of MOST by considering the bulk gradient directly, enabling the study of any sublayer of the atmospheric surface layer. This results in a family of similarity relations describing all gradients from the local gradient to the full-layer bulk gradient. By applying the profiles derived from the law-of-the-wall and MOST, we are able to derive analytic expressions for this family of similarity relations. Under stable conditions, we discover that the log-linear profile of Businger–Dyer generalizes from the local to the bulk shear where the slope is dependent on the choice of the layer. The simplicity of the general log-linear relation allows for estimating the influence of stability on the non-dimensional gradients. It is shown that bulk gradients are less sensitive to stability than the local gradient. By correctly filtering cases where the full-layer bulk gradient is influenced by stability, we demonstrate that MOST is compatible with the Hockey-Stick Transition. For unstable conditions, the Kader and Yaglom (J Fluid Mech 212(151):637-662, 1990) model represents the local gradient well but was not successful in representing the bulk gradient, demonstrating the need for further analysis of scaling relations for the unstable atmospheric surface layer.

Funder

Finnish Meteorological Institute

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Flux‐gradient relations and their dependence on turbulence anisotropy;Quarterly Journal of the Royal Meteorological Society;2024-05-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3