Abstract
AbstractCumulenes and polyynes have the potential to be applied as linear, sp-hybridized, one-dimensional all-carbon nanowires in molecular electronics and optoelectronics. The delocalization and conductivity descriptors of the two π-conjugated systems, heterodisubstituted with the NO2, CN, NH2, and OH groups, were studied using the B3LYP, B3LYP/D3, CAM-B3LYP, and ωB97XD DFT functionals, combined with the aug-cc-pVTZ basis set. Three independent types of molecular descriptors, based on geometry (the HOMA index), electrical properties (trace of the polarizability tensor), and energetic (the HOMO-LUMO energy gap) were shown to be mutually correlated and provided concordant indication that communication through the cumulene chain was considerably better than through the polyyne one. The communication can be tuned by using substituents of significantly different π-electron donor-acceptor properties as well as by the external electric field directed along the carbon chain.
Funder
Ministerstwo Nauki i Szkolnictwa Wyższego
Interdisciplinary Center for Mathematical and Computer Modelling
Świerk Computing Centre
Publisher
Springer Science and Business Media LLC
Subject
Physical and Theoretical Chemistry,Condensed Matter Physics
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献