Author:
Bailey G. J.,Denton M. H.,Heelis R. A.,Venkatraman S.
Abstract
Abstract. Latitudinal variations in the nighttime plasma temperatures of the equatorial topside ionosphere during northern winter at solar maximum have been examined by using values modelled by SUPIM (Sheffield University Plasmasphere Ionosphere Model) and observations made by the DMSP F10 satellite at 21.00 LT near 800 km altitude. The modelled values confirm that the crests observed near 15° latitude in the winter hemisphere are due to adiabatic heating and the troughs observed near the magnetic equator are due to adiabatic cooling as plasma is transported along the magnetic field lines from the summer hemisphere to the winter hemisphere. The modelled values also confirm that the interhemispheric plasma transport needed to produce the required adiabatic heating/cooling can be induced by F-region neutral winds. It is shown that the longitudinal variations in the observed troughs and crests arise mainly from the longitudinal variations in the magnetic meridional wind. At longitudes where the magnetic declination angle is positive the eastward geographic zonal wind combines with the northward (summer hemisphere to winter hemisphere) geographic meridional wind to enhance the northward magnetic meridional wind. This leads to deeper troughs and enhanced crests. At longitudes where the magnetic declination angle is negative the eastward geographic zonal wind opposes the northward geographic meridional wind and the trough depth and crest values are reduced. The characteristic features of the troughs and crests depend, in a complicated manner, on the field-aligned flow of plasma, thermal conduction, and inter-gas heat transfer. At the latitudes of the troughs/crests, the low/high plasma temperatures lead to increased/decreased plasma concentrations.Key words: Ionosphere (equatorial ionosphere; ionosphere-atmosphere interactions)
Subject
Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Geology,Astronomy and Astrophysics
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献