Rainbow Cycles in Properly Edge-Colored Graphs

Author:

Kim Jaehoon,Lee Joonkyung,Liu Hong,Tran Tuan

Abstract

AbstractWe prove that every properly edge-colored n-vertex graph with average degree at least $$32(\log 5n)^2$$ 32 ( log 5 n ) 2 contains a rainbow cycle, improving upon the $$(\log n)^{2+o(1)}$$ ( log n ) 2 + o ( 1 ) bound due to Tomon. We also prove that every properly edge-colored n-vertex graph with at least $$10^5 k^3 n^{1+1/k}$$ 10 5 k 3 n 1 + 1 / k edges contains a rainbow 2k-cycle, which improves the previous bound $$2^{ck^2}n^{1+1/k}$$ 2 c k 2 n 1 + 1 / k obtained by Janzer. Our method using homomorphism inequalities and a lopsided regularization lemma also provides a simple way to prove the Erdős–Simonovits supersaturation theorem for even cycles, which may be of independent interest.

Funder

Korea Advanced Institute of Science and Technology

Publisher

Springer Science and Business Media LLC

Reference9 articles.

1. Alon, N.,Bucić, M., Sauermann, L., Zakharov, D., Zamir, O.: Essentially tight bounds for rainbow cycles in proper edge-colourings. arXiv:2309.04460

2. Bondy, J.A., Simonovits, M.: Cycles of even length in graphs. J. Combin. Theory Ser. B 16, 97–105 (1974)

3. Das, S., Lee, C., Sudakov, B.: Rainbow Turán problem for even cycles. Eur. J. Combin. 34(5), 905–915 (2013)

4. Erdős, P., and Simonovits, M.: Cube-supersaturated graphs and related problems. In: Progress in Graph Theory, pp. 203–218. Academic Press, Toronto (1984)

5. Janzer, O.: Rainbow Turán number of even cycles, repeated patterns and blow-ups of cycles. Israel J. Math. 253(2), 813–840 (2023)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3