Asymptotics of the Hypergraph Bipartite Turán Problem

Author:

Bradač Domagoj,Gishboliner Lior,Janzer Oliver,Sudakov Benny

Abstract

AbstractFor positive integers str, let $$K_{s,t}^{(r)}$$ K s , t ( r ) denote the r-uniform hypergraph whose vertex set is the union of pairwise disjoint sets $$X,Y_1,\dots ,Y_t$$ X , Y 1 , , Y t , where $$|X| = s$$ | X | = s and $$|Y_1| = \dots = |Y_t| = r-1$$ | Y 1 | = = | Y t | = r - 1 , and whose edge set is $$\{\{x\} \cup Y_i: x \in X, 1\le i\le t\}$$ { { x } Y i : x X , 1 i t } . The study of the Turán function of $$K_{s,t}^{(r)}$$ K s , t ( r ) received considerable interest in recent years. Our main results are as follows. First, we show that $$\begin{aligned} \textrm{ex}\left( n,K_{s,t}^{(r)}\right) = O_{s,r}\left( t^{\frac{1}{s-1}}n^{r - \frac{1}{s-1}}\right) \end{aligned}$$ ex n , K s , t ( r ) = O s , r t 1 s - 1 n r - 1 s - 1 for all $$s,t\ge 2$$ s , t 2 and $$r\ge 3$$ r 3 , improving the power of n in the previously best bound and resolving a question of Mubayi and Verstraëte about the dependence of $$\textrm{ex}(n,K_{2,t}^{(3)})$$ ex ( n , K 2 , t ( 3 ) ) on t. Second, we show that (1) is tight when r is even and $$t \gg s$$ t s . This disproves a conjecture of Xu, Zhang and Ge. Third, we show that (1) is not tight for $$r = 3$$ r = 3 , namely that $$\textrm{ex}(n,K_{s,t}^{(3)}) = O_{s,t}(n^{3 - \frac{1}{s-1} - \varepsilon _s})$$ ex ( n , K s , t ( 3 ) ) = O s , t ( n 3 - 1 s - 1 - ε s ) (for all $$s\ge 3$$ s 3 ). This indicates that the behaviour of $$\textrm{ex}(n,K_{s,t}^{(r)})$$ ex ( n , K s , t ( r ) ) might depend on the parity of r. Lastly, we prove a conjecture of Ergemlidze, Jiang and Methuku on the hypergraph analogue of the bipartite Turán problem for graphs with bounded degrees on one side. Our tools include a novel twist on the dependent random choice method as well as a variant of the celebrated norm graphs constructed by Kollár, Rónyai and Szabó.

Publisher

Springer Science and Business Media LLC

Subject

Computational Mathematics,Discrete Mathematics and Combinatorics

Reference17 articles.

1. Alon, N., Rónyai, L., Szabó, T.: Norm-graphs: variations and applications. J. Comb. Theory Series B 76(2), 280–290 (1999)

2. Bukh, B.: Random algebraic construction of extremal graphs. Bull. Lond. Math. Soc. 47, 939–945 (2015)

3. Erdős, P.: Problems and results in combinatorial analysis, In: Proceedings of the eighth southeastern conference on combinatorics, graph theory and computing (Louisiana State University, Baton Rouge, La., 1977). Congressus Numerantium XIX, Utilitas Math., Winnipeg, Man. pp. 3–12 (1977)

4. Ergemlidze, B., Jiang, T., Methuku, A.: New bounds for a hypergraph bipartite Turán problem. J. Comb. Theory Series A 176, 105299 (2020)

5. Fox, J., Sudakov, B.: Dependent random choice. Random Struct. Algorithms 38, 68–99 (2011)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Extremal Problems for Hypergraph Blowups of Trees;SIAM Journal on Discrete Mathematics;2023-10-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3