1. Keevash, P.: The existence of designs. Preprint (2014). arXiv: 1401.3665 [math.CO] (cit. on p. 1)
2. Glock, S., Kühn, D., Lo, A., Osthus, D.: The existence of designs via iterative absorption: hypergraph F-designs for arbitrary F. Mem. Am. Math. Soc. 16, 1–2 (2020)
3. Glock, S., Kühn, D., Osthus, D.: “Extremal aspects of graph and hypergraph decomposition problems”. In: Surveys in combinatorics 2021. Vol. 470. London Mathematical Society. Lecture Note Ser. Cambridge University Press, Cambridge, (2021), pp. 235–265. https://doi.org/10.1017/9781009036214.007(cit. on pp. 1, 3, 24)
4. Barber, B., Kühn, D., Lo, A., Osthus, D.: Edge-decompositions of graphs with high minimum degree. Adv. Math. 288, 337–385 (2016). https://doi.org/10.1016/j.aim.2015.09.032
5. Nash-Williams, C.: An unsolved problem concerning decomposition of graphs into triangles. In: Combinatorial Theory and its Applications, Vol. III, Proceedings of the Colloquium on Combinatorial Theory and its Applications held at Balatonfüred, August 24–29, 1969, North-Holland (1970), pp. 1179–1183 (cit. on p. 2)