Author:
Jiang Zilin,Tidor Jonathan,Yao Yuan,Zhang Shengtong,Zhao Yufei
Abstract
AbstractWe study the problem of determining the maximum size of a spherical two-distance set with two fixed angles (one acute and one obtuse) in high dimensions. Let $$N_{\alpha ,\beta }(d)$$
N
α
,
β
(
d
)
denote the maximum number of unit vectors in $${\mathbb {R}}^d$$
R
d
where all pairwise inner products lie in $$\{\alpha ,\beta \}$$
{
α
,
β
}
. For fixed $$-1\le \beta<0\le \alpha <1$$
-
1
≤
β
<
0
≤
α
<
1
, we propose a conjecture for the limit of $$N_{\alpha ,\beta }(d)/d$$
N
α
,
β
(
d
)
/
d
as $$d \rightarrow \infty $$
d
→
∞
in terms of eigenvalue multiplicities of signed graphs. We determine this limit when $$\alpha +2\beta <0$$
α
+
2
β
<
0
or $$(1-\alpha )/(\alpha -\beta ) \in \{1, \sqrt{2}, \sqrt{3}\}$$
(
1
-
α
)
/
(
α
-
β
)
∈
{
1
,
2
,
3
}
.Our work builds on our recent resolution of the problem in the case of $$\alpha = -\beta $$
α
=
-
β
(corresponding to equiangular lines). It is the first determination of $$\lim _{d \rightarrow \infty } N_{\alpha ,\beta }(d)/d$$
lim
d
→
∞
N
α
,
β
(
d
)
/
d
for any nontrivial fixed values of $$\alpha $$
α
and $$\beta $$
β
outside of the equiangular lines setting.
Funder
Massachusetts Institute of Technology
Publisher
Springer Science and Business Media LLC
Subject
Computational Mathematics,Discrete Mathematics and Combinatorics
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献