The Universality of the Resonance Arrangement and Its Betti Numbers

Author:

Kühne Lukas

Abstract

AbstractThe resonance arrangement $$\mathcal {A}_n$$ A n is the arrangement of hyperplanes which has all non-zero 0/1-vectors in $$\mathbb {R}^n$$ R n as normal vectors. It is the adjoint of the Braid arrangement and is also called the all-subsets arrangement. The first result of this article shows that any rational hyperplane arrangement is the minor of some large enough resonance arrangement. Its chambers appear as regions of polynomiality in algebraic geometry, as generalized retarded functions in mathematical physics and as maximal unbalanced families that have applications in economics. One way to compute the number of chambers of any real arrangement is through the coefficients of its characteristic polynomial which are called Betti numbers. We show that the Betti numbers of the resonance arrangement are determined by a fixed combination of Stirling numbers of the second kind. Lastly, we develop exact formulas for the first two non-trivial Betti numbers of the resonance arrangement.

Funder

Universität Bielefeld

Publisher

Springer Science and Business Media LLC

Subject

Computational Mathematics,Discrete Mathematics and Combinatorics

Reference28 articles.

1. Aguiar, M., Mahajan, S.: Topics in Hyperplane Arrangements, Mathematical Surveys and Monographs, vol. 226. American Mathematical Society, Providence (2017)

2. Billera, L.J., Billey, S.C., Tewari, V.: Boolean product polynomials and schur-positivity, arxiv:1806.02943 (2018)

3. Brysiewicz, T., Eble, H., Kühne, L.: Enumerating chambers of hyperplane arrangements with symmetry, arxiv:2105.14542 (2021)

4. Björner, A.: Positive Sum Systems, Combinatorial Methods in Topology and Algebra. Springer INdAM Ser., vol. 12, pp. 157–171. Springer, Cham (2015)

5. Billera, L.J., Tatch Moore, J., Dufort Moraites, C., Wang, Y., Williams, K.: Maximal unbalanced families, arxiv:1209.2309 (2012)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3