Weak Saturation of Multipartite Hypergraphs

Author:

Bulavka Denys,Tancer Martin,Tyomkyn Mykhaylo

Abstract

AbstractGiven q-uniform hypergraphs (q-graphs) FG and H, where G is a spanning subgraph of F, G is called weaklyH-saturated in F if the edges in $$E(F)\setminus E(G)$$ E ( F ) \ E ( G ) admit an ordering $$e_1,\ldots , e_k$$ e 1 , , e k so that for all $$i\in [k]$$ i [ k ] the hypergraph $$G\cup \{e_1,\ldots ,e_i\}$$ G { e 1 , , e i } contains an isomorphic copy of H which in turn contains the edge $$e_i$$ e i . The weak saturation number of H in F is the smallest size of an H-weakly saturated subgraph of F. Weak saturation was introduced by Bollobás in 1968, but despite decades of study our understanding of it is still limited. The main difficulty lies in proving lower bounds on weak saturation numbers, which typically withstands combinatorial methods and requires arguments of algebraic or geometrical nature. In our main contribution in this paper we determine exactly the weak saturation number of complete multipartite q-graphs in the directed setting, for any choice of parameters. This generalizes a theorem of Alon from 1985. Our proof combines the exterior algebra approach from the works of Kalai with the use of the colorful exterior algebra motivated by the recent work of Bulavka, Goodarzi and Tancer on the colorful fractional Helly theorem. In our second contribution answering a question of Kronenberg, Martins and Morrison, we establish a link between weak saturation numbers of bipartite graphs in the clique versus in a complete bipartite host graph. In a similar fashion we asymptotically determine the weak saturation number of any complete q-partite q-graph in the clique, generalizing another result of Kronenberg et al.

Funder

Charles University

Publisher

Springer Science and Business Media LLC

Subject

Computational Mathematics,Discrete Mathematics and Combinatorics

Reference26 articles.

1. Alon, N.: An extremal problem for sets with applications to graph theory. J. Comb. Theory A 40(1), 82–89 (1985)

2. Balogh, J., Bollobás, B., Morris, R., Riordan, O.: Linear algebra and bootstrap percolation. J. Comb. Theory A 119(6), 1328–1335 (2012)

3. Bulavka, D., Goodarzi, A., Tancer, M.: Optimal bounds for the colorful fractional Helly theorem. In: Buchin, K., Colin de Verdière, É. (eds.) In: 37th International Symposium on Computational Geometry (SoCG 2021), volume 189 of Leibniz International Proceedings in Informatics (LIPIcs), pp. 19:1–19:14, Dagstuhl, Germany (2021). Schloss Dagstuhl – Leibniz-Zentrum für Informatik

4. Bollobás, B.: Weakly $$k$$-saturated graphs. In: Beiträge zur Graphentheorie (Kolloquium. Manebach, 1967), pp. 25–31. Teubner, Leipzig (1968)

5. Balogh, J., Pete, G.: Random disease on the square grid. In: Proceedings of the Eighth International Conference “Random Structures and Algorithms” (Poznan, 1997), vol. 13, pp. 409–422 (1998)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Long running times for hypergraph bootstrap percolation;European Journal of Combinatorics;2024-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3