Author:
O’Donnell Ryan,Servedio Rocco A.
Publisher
Springer Science and Business Media LLC
Subject
Computational Mathematics,Discrete Mathematics and Combinatorics
Reference29 articles.
1. A. Ambainis, A. Childs, B. Reichardt, R. Spalek and S. Zhang: Any ANDOR formula of size n can be evaluated in time n 1/2+o(1) on a quantum computer, in: Proc. 48th IEEE Symposium on Foundations of Computer Science (FOCS), pages 363–372, 2007.
2. D. Angluin: Queries and concept learning, Machine Learning 2 (1988), 319–342.
3. J. Aspnes, R. Beigel, M. Furst and S. Rudich: The expressive power of voting polynomials, Combinatorica 14(2) (1994), 1–14.
4. R. Beigel: The polynomial method in circuit complexity, in: Proceedings of the Eigth Conference on Structure in Complexity Theory, pages 82–95, 1993.
5. R. Beigel: Perceptrons, PP, and the Polynomial Hierarchy, Computational Complexity 4 (1994), 339–349.
Cited by
32 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Depth- Threshold Circuits vs. Depth-(+1) AND-OR Trees;Proceedings of the 55th Annual ACM Symposium on Theory of Computing;2023-06-02
2. The approximate degree of DNF and CNF formulas;Proceedings of the 54th Annual ACM SIGACT Symposium on Theory of Computing;2022-06-09
3. Feature Purification: How Adversarial Training Performs Robust Deep Learning;2021 IEEE 62nd Annual Symposium on Foundations of Computer Science (FOCS);2022-02
4. Fooling Polytopes;Journal of the ACM;2022-01-31
5. Near-Optimal Lower Bounds on the Threshold Degree and Sign-Rank of AC$^0$;SIAM Journal on Computing;2021-08-20