Liver damage favors the eliminations of HBV integration and clonal hepatocytes in chronic hepatitis B

Author:

Hu Gang,Huang Ming X.,Li Wei Y.,Gan Chong J.,Dong Wen X.,Peng Xiao M.ORCID

Abstract

Abstract Background HBV integration is suspected to be an obstinate risk factor for hepatocellular carcinoma (HCC) in the era of antiviral therapy. Integration events start to occur in the immunotolerance phase, but their fates in the immune clearance phase have not yet been clarified. Here, we report the influences of liver damage on HBV integration and clonal hepatocyte expansion in patients with chronic hepatitis B (CHB). Methods HBV integration breakpoints in liver biopsy samples from 54 CHB patients were detected using a modified next-generation sequencing assay. Results A total of 3729 (69 per sample) integration breakpoints were found in the human genome, including some hotspot genes and KEGG pathways, especially in patients with abnormal transaminases. The number of breakpoint types, an integration risk parameter, was negatively correlated with HBV DNA load and transaminase levels. The average, maximum and total frequencies of given breakpoint types, parameters of clonal hepatocyte expansion, were negatively correlated with HBV DNA load, transaminase levels and liver inflammation activity grade score. The HBV DNA load and inflammation activity grade score were further found to be positively correlated with transaminase levels. Moreover, nucleos(t)ide analog (NUC) treatment that normalized transaminases nonsignificantly reduced the types, but significantly increased the average frequency and negated the enrichments of integration breakpoints. Conclusion Liver damage mainly removed the inventories of viral integration and clonal hepatocytes in CHB. NUC treatment may have reduced HBV integration but clearly increased clonal hepatocyte expansion, which may explain why HCC risk cannot be ruled out by NUC treatment.

Funder

Sun Yat-sen University

Scientific and Technological Bureau of Guangzhou, Guangdong Province

National Natural Science Foundation of China-Shandong Joint Fund for Marine Science Research Centers

Publisher

Springer Science and Business Media LLC

Subject

Hepatology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3