Author:
Chen Qiaofeng,Xiao Han,Gu Yunquan,Weng Zongpeng,Wei Lihong,Li Bin,Liao Bing,Li Jiali,Lin Jie,Hei Mengying,Peng Sui,Wang Wei,Kuang Ming,Chen Shuling
Abstract
Abstract
Background
Microvascular invasion (MVI) is essential for the management of hepatocellular carcinoma (HCC). However, MVI is hard to evaluate in patients without sufficient peri-tumoral tissue samples, which account for over a half of HCC patients.
Methods
We established an MVI deep-learning (MVI-DL) model with a weakly supervised multiple-instance learning framework, to evaluate MVI status using only tumor tissues from the histological whole slide images (WSIs). A total of 350 HCC patients (2917 WSIs) from the First Affiliated Hospital of Sun Yat-sen University (FAHSYSU cohort) were divided into a training and test set. One hundred and twenty patients (504 WSIs) from Dongguan People’s Hospital and Shunde Hospital of Southern Medical University (DG-SD cohort) formed an external test set. Unsupervised clustering and class activation mapping were applied to visualize the key histological features.
Results
In the FAHSYSU and DG-SD test set, the MVI-DL model achieved an AUC of 0.904 (95% CI 0.888–0.920) and 0.871 (95% CI 0.837–0.905), respectively. Visualization results showed that macrotrabecular architecture with rich blood sinus, rich tumor stroma and high intratumor heterogeneity were identified as the key features associated with MVI ( +), whereas severe immune infiltration and highly differentiated tumor cells were associated with MVI (−). In the simulation of patients with only one WSI or biopsies only, the AUC of the MVI-DL model reached 0.875 (95% CI 0.855–0.895) and 0.879 (95% CI 0.853–0.906), respectively.
Conclusion
The effective, interpretable MVI-DL model has potential as an important tool with practical clinical applicability in evaluating MVI status from the tumor areas on the histological slides.
Graphical abstract
Funder
National Key Research and Development Program of China
National Science Fund for Distinguished Young Scholars
National Natural Science Foundation of China
Guangdong Natural Science Fund for Distinguished Young Scholars
Natural Science Foundation of Guangdong Province
Guangdong Basic and Applied Basic Research Foundation
Publisher
Springer Science and Business Media LLC
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献