Author:
Zhang Xiangying,Tian Yuan,Xu Ling,Fan Zihao,Cao Yaling,Ma Yingmin,Li Hao,Ren Feng
Abstract
Abstract
Background and aims
The formation of an intranuclear pool of covalently closed circular DNA (cccDNA) in the liver is the main cause of persistent hepatitis B virus (HBV) infection. Here, we established highly sensitive and specific methods to detect cccDNA based on CRISPR-Cas13a technology.
Methods
We used plasmid-safe ATP-dependent DNase (PSAD) enzymes and HindIII to digest loose circle rcDNA and double-stranded linear DNA, amplify specific HBV cccDNA fragments by rolling circle amplification (RCA) and PCR, and detect the target gene using CRISPR-Cas13a technology. The CRISPR-Cas13a-based assay for the detection of cccDNA was further clinically validated using HBV-related liver tissues, plasma, whole blood and peripheral blood mononuclear cells (PBMCs).
Results
Based on the sample pretreatment step, the amplification step and the detection step, we established a new CRISPR-Cas13a-based assay for the detection of cccDNA. After the amplification of RCA and PCR, 1 copy/μl HBV cccDNA could be detected by CRISPR/Cas13-assisted fluorescence readout. We used ddPCR, qPCR, RCA-qPCR, PCR-CRISPR and RCA-PCR-CRISPR methods to detect 20, 4, 18, 14 and 29 positive samples in liver tissue samples from 40 HBV-related patients, respectively. HBV cccDNA was almost completely undetected in the 20 blood samples of HBV patients (including plasma, whole blood and PBMCs) by the above 5 methods.
Conclusions
We developed a novel CRISPR-based assay for the highly sensitive and specific detection of HBV cccDNA, presenting a promising alternative for accurate detection of HBV infection, antiviral therapy evaluation and treatment guidance.
Funder
the National Natural Science Foundation of China
Key Projects of the Beijing Municipal Education Commission's Science and Technology Plan
Special key research project of capital health development scientific research
the Demonstrating Application and Research of Clinical Diagnosis and Treatment Technology in Beijing
Beijing Talents foundation
Beijing Hospitals Authority Youth Programme
Publisher
Springer Science and Business Media LLC
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献