Biased Humans, (Un)Biased Algorithms?
-
Published:2022-02-28
Issue:3
Volume:183
Page:637-652
-
ISSN:0167-4544
-
Container-title:Journal of Business Ethics
-
language:en
-
Short-container-title:J Bus Ethics
Author:
Pethig FlorianORCID, Kroenung Julia
Abstract
AbstractPrevious research has shown that algorithmic decisions can reflect gender bias. The increasingly widespread utilization of algorithms in critical decision-making domains (e.g., healthcare or hiring) can thus lead to broad and structural disadvantages for women. However, women often experience bias and discrimination through human decisions and may turn to algorithms in the hope of receiving neutral and objective evaluations. Across three studies (N = 1107), we examine whether women’s receptivity to algorithms is affected by situations in which they believe that their gender identity might disadvantage them in an evaluation process. In Study 1, we establish, in an incentive-compatible online setting, that unemployed women are more likely to choose to have their employment chances evaluated by an algorithm if the alternative is an evaluation by a man rather than a woman. Study 2 generalizes this effect by placing it in a hypothetical hiring context, and Study 3 proposes that relative algorithmic objectivity, i.e., the perceived objectivity of an algorithmic evaluator over and against a human evaluator, is a driver of women’s preferences for evaluations by algorithms as opposed to men. Our work sheds light on how women make sense of algorithms in stereotype-relevant domains and exemplifies the need to provide education for those at risk of being adversely affected by algorithmic decisions. Our results have implications for the ethical management of algorithms in evaluation settings. We advocate for improving algorithmic literacy so that evaluators and evaluatees (e.g., hiring managers and job applicants) can acquire the abilities required to reflect critically on algorithmic decisions.
Funder
Landesgraduiertenfoerderung Baden-Wuerttemberg Universität Mannheim
Publisher
Springer Science and Business Media LLC
Subject
Law,Economics and Econometrics,Arts and Humanities (miscellaneous),General Business, Management and Accounting,Business and International Management
Reference64 articles.
1. Allaire, J., Xie, Y., McPherson, J., Luraschi, J., Ushey, K., Atkins, A., Wickham, H., Cheng, J., Chang, W., Iannone, R. (2021). rmarkdown: Dynamic documents for R. https://github.com/rstudio/rmarkdown 2. Berinsky, A. J., Huber, G. A., & Lenz, G. S. (2012). Evaluating online labor markets for experimental research: Amazon. com’s Mechanical Turk. Political Analysis, 20(3), 351–368. 3. Bigman, Y. E., & Gray, K. (2018). People are averse to machines making moral decisions. Cognition, 181, 21–34. 4. Bohnet, I., Van Geen, A., & Bazerman, M. (2016). When performance trumps gender bias: Joint vs. separate evaluation. Management Science, 62(5), 1225–1234. 5. Buhmann, A., Paßmann, J., & Fieseler, C. (2020). Managing algorithmic accountability: Balancing reputational concerns, engagement strategies, and the potential of rational discourse. Journal of Business Ethics, 163(2), 265–280.
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|