Abstract
AbstractWe establish a complete picture of condensation in the inclusion process in the thermodynamic limit with vanishing diffusion, covering all scaling regimes of the diffusion parameter and including large deviation results for the maximum occupation number. We make use of size-biased sampling to study the structure of the condensed phase, which can extend over more than one lattice site and exhibit an interesting hierarchical structure characterized by the Poisson–Dirichlet distribution. While this approach is established in other areas including population genetics or random permutations, we show that it also provides a powerful tool to analyse homogeneous condensation in stochastic particle systems with stationary product distributions. We discuss the main mechanisms beyond inclusion processes that lead to the interesting structure of the condensed phase, and the connection to other generic particle systems. Our results are exact, and we present Monte-Carlo simulation data and recursive numerics for partition functions to illustrate the main points.
Funder
Engineering and Physical Sciences Research Council
Mahidol University
Publisher
Springer Science and Business Media LLC
Subject
Mathematical Physics,Statistical and Nonlinear Physics
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献