Critical Droplets and Sharp Asymptotics for Kawasaki Dynamics with Strongly Anisotropic Interactions

Author:

Baldassarri SimoneORCID,Nardi Francesca R.

Abstract

AbstractIn this paper we analyze metastability and nucleation in the context of the Kawasaki dynamics for the two-dimensional Ising lattice gas at very low temperature. Let$$\varLambda \subset {\mathbb {Z}}^2$$ΛZ2be a finite box. Particles perform simple exclusion on$$\varLambda $$Λ, but when they occupy neighboring sites they feel a binding energy$$-U_1<0$$-U1<0in the horizontal direction and$$-U_2<0$$-U2<0in the vertical one. Thus the Kawasaki dynamics is conservative inside the volume$$\varLambda $$Λ. Along each bond touching the boundary of$$\varLambda $$Λfrom the outside to the inside, particles are created with rate$$\rho =e^{-\varDelta \beta }$$ρ=e-Δβ, while along each bond from the inside to the outside, particles are annihilated with rate 1, where$$\beta >0$$β>0is the inverse temperature and$$\varDelta >0$$Δ>0is an activity parameter. Thus, the boundary of$$\varLambda $$Λplays the role of an infinite gas reservoir with density$$\rho $$ρ. We consider the parameter regime$$U_1>2U_2$$U1>2U2also known as the strongly anisotropic regime. We take$$\varDelta \in {(U_1,U_1+U_2)}$$Δ(U1,U1+U2), so that the empty (respectively full) configuration is a metastable (respectively stable) configuration. We consider the asymptotic regime corresponding to finite volume in the limit as$$\beta \rightarrow \infty $$β. We investigate how the transition from empty to full takes place with particular attention to the critical configurations that asymptotically have to be crossed with probability 1. The derivation of some geometrical properties of the saddles allows us to identify the full geometry of the minimal gates and their boundaries for the nucleation in the strongly anisotropic case. We observe very different behaviors for this case with respect to the isotropic ($$U_1=U_2$$U1=U2) and weakly anisotropic ($$U_1<2U_2$$U1<2U2) ones. Moreover, we derive mixing time, spectral gap and sharp estimates for the asymptotic transition time for the strongly anisotropic case.

Publisher

Springer Science and Business Media LLC

Subject

Mathematical Physics,Statistical and Nonlinear Physics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3