Abstract
AbstractWe consider the Random Euclidean Assignment Problem in dimension $$d=1$$
d
=
1
, with linear cost function. In this version of the problem, in general, there is a large degeneracy of the ground state, i.e. there are many different optimal matchings (say, $$\sim \exp (S_N)$$
∼
exp
(
S
N
)
at size N). We characterize all possible optimal matchings of a given instance of the problem, and we give a simple product formula for their number. Then, we study the probability distribution of $$S_N$$
S
N
(the zero-temperature entropy of the model), in the uniform random ensemble. We find that, for large N, $$S_N \sim \frac{1}{2} N \log N + N s + {\mathcal {O}}\left( \log N \right) $$
S
N
∼
1
2
N
log
N
+
N
s
+
O
log
N
, where s is a random variable whose distribution p(s) does not depend on N. We give expressions for the moments of p(s), both from a formulation as a Brownian process, and via singularity analysis of the generating functions associated to $$S_N$$
S
N
. The latter approach provides a combinatorial framework that allows to compute an asymptotic expansion to arbitrary order in 1/N for the mean and the variance of $$S_N$$
S
N
.
Funder
Agence Nationale de la Recherche
Publisher
Springer Science and Business Media LLC
Subject
Mathematical Physics,Statistical and Nonlinear Physics
Reference20 articles.
1. D’Achille, M.P.: Statistical properties of the Euclidean random assignment problem. Theses, Université Paris-Saclay (2020). https://tel.archives-ouvertes.fr/tel-03098672
2. Ambrosio, L., Gigli, N.: A User’s Guide to Optimal Transport. In: Ambrosio, L., Bressan, A., Helbing, D., Klar, A., Zuazua, E. (eds.) Modelling and Optimisation of Flows on Networks: Cetraro, Italy 2009, Editors: Benedetto Piccoli, Michel Rascle, Lecture Notes in Mathematics, pp. 1–155. Springer, Berlin, Heidelberg (2013). https://doi.org/10.1007/978-3-642-32160-3_1
3. Bobkov, S.G., Ledoux, M.: Transport Inequalities on Euclidean spaces with non-Euclidean metrics. J. Fourier Anal. Appl. 26(4), 60 (2020). https://doi.org/10.1007/s00041-020-09766-2
4. Boniolo, E., Caracciolo, S., Sportiello, A.: Correlation function for the Grid-Poisson Euclidean matching on a line and on a circle. J. Stat. Mech. 2014(11), P11023 (2014). https://doi.org/10.1088/1742-5468/2014/11/P11023
5. Caracciolo, S., D’Achille, M.P., Erba, V., Sportiello, A.: The Dyck bound in the concave 1-dimensional random assignment model. J. Phys. A 53(6), 064001 (2020). https://doi.org/10.1088/1751-8121/ab4a34
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Minimal matchings of point processes;Probability Theory and Related Fields;2022-07-13