A Spin Glass Model for the Loss Surfaces of Generative Adversarial Networks

Author:

Baskerville Nicholas P.ORCID,Keating Jonathan P.,Mezzadri Francesco,Najnudel Joseph

Abstract

AbstractWe present a novel mathematical model that seeks to capture the key design feature of generative adversarial networks (GANs). Our model consists of two interacting spin glasses, and we conduct an extensive theoretical analysis of the complexity of the model’s critical points using techniques from Random Matrix Theory. The result is insights into the loss surfaces of large GANs that build upon prior insights for simpler networks, but also reveal new structure unique to this setting which explains the greater difficulty of training GANs.

Funder

european research council

gchq

the university of bristol

Publisher

Springer Science and Business Media LLC

Subject

Mathematical Physics,Statistical and Nonlinear Physics

Reference64 articles.

1. Choromanska, A., Henaff, M., Mathieu, M., Arous, G.B., LeCun, Y.: The loss surfaces of multilayer networks In: Artificial Intelligence and Statistics, pp. 192–204 (2015)

2. Auffinger, A., Arous, G.B., Cerny, J.: Random matrices and complexity of spin glasses. Commun. Pure Appl. Math. 66(2), 165 (2013)

3. Choromanska, A., LeCun, Y., Arous, G.B.: Open problem: The landscape of the loss surfaces of multilayer networks. In: Conference on Learning Theory, pp. 1756–1760 (2015)

4. Papyan, V.: The Full Spectrum of Deepnet Hessians at Scale: Dynamics with SGD Training and Sample Size, arXiv preprint arXiv:1811.07062 (2018)

5. Granziol, D., Garipov, T., Vetrov, D., Zohren, S., Roberts, S., Wilson, A.G.: Towards understanding the true loss surface of deep neural networks using random matrix theory and iterative spectral methods. https://openreview.net/forum?id=H1gza2NtwH. Accessed: 2021-06-15 (2019)

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3