Abstract
AbstractThe optical conductivity is the basic defining property of materials characterizing the current response toward time-dependent electric fields. In this work, following the approach of Kubo’s response theory, we study the general properties of the nonlinear optical conductivities of quantum many-body systems both in equilibrium and non-equilibrium. We obtain an expression of the second- and the third-order optical conductivity in terms of correlation functions and present a perturbative proof of the generalized Kohn formula proposed recently. We also discuss a generalization of the f-sum rule to a non-equilibrium setting by focusing on the instantaneous response.
Funder
Precursory Research for Embryonic Science and Technology
Core Research for Evolutional Science and Technology
KAKENHI
Publisher
Springer Science and Business Media LLC
Subject
Mathematical Physics,Statistical and Nonlinear Physics
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献